Lecture 5 (week 5: 17-18 March 2025)

Elastic response

* Hook'’s law for anisotropic materials
« Neumann principle application in 4" rank tensors

* Tensor and matrix forms for elasticity constants

Lecture 5, Crystalline materials: structures and properties — Elastic response
2025



Elastic response of solids

Deformation in 1 dimension
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Motion of material under the strain

Change of a vector under small strain
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Strain is a second rank tensor



Motion of material under the strain

X, 4 B
u vector displacement
A _ 1 aui auj
gij = +
— 2\ ox. Ox,
X, J !
A position of a point without strain N
B position of the point under the strain £&;; — = A(n)=n.c.n,
ij ] ¢y

Strain tensor: symmetric 2"9 rank tensor

Note: as shown in Lect. 4, similarly K ,, =n,;K;n;
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Example — tensile strain
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Example — shear strain
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In 45%-rotated frame (principal
axes of the strain tensor)
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Stress tensor

1 dimension 3 dimensions
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- T lod, fi=F/S

Force Stress tensor Gij — Gji

F Ji=oyn, Symmetric
2"d rank tensor



Stress tensor
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/ One suffix refers to the direction of the force

The other suffix — to the normal to the face on
which the force acts

Symmetry: Shear stresses across the diagonal
are identical (i.e. oy, = o4,

Gy, = G, and o, = o) as a result of static
equilibrium (no net moment).



Stress tensor

Example- uniaxial stress
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Example- hydrostatic pressure

Stress tensor

solid —

pd

pressure p

quuid/




Elastic response of solids

Stain tensor Stress tensor
5[. — gl
i ij" j —
I = O,N,
Hook’s law
Ei = SiOu Compliance tensor
O, = Cinién Stiffness tensor

Young’s modulus
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Elastic response of solids

Strain tensor

Stress tensor

Compliance tensor

Stiffness tensor

Sikl = S jikl
Sijkt = Sijtk
Y = Sk
Cir = C ki
Ciit = itk

et = Sy

symmetric

symmetric

symmetric x 3

symmetric x 3

(Thermodynamics)
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Matrix description (Voigt notations)

Stress tensor Strain tensor
\
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Matrix description

Stiffness tensor Compliance tensor

O, = Ciniéy Eii = SikiOu
E =85S O
_ n nm m

Gn o Cnmgm

C.., =C Sitkt = Sum m,n=1,2,3

gL T fFix 1. 2. 3 and

B one suffix 1,2, 3 an
Sijkl o Snm /2

one suffix 4, 5, 6

mmn=1..... 6 |
Sik1 = Spm /4 both suffixes4,5,6



Matrix description

=SO OU O =CE

S1111
S1122

$1133
2851123

251113

251112

Cr122
Cam2
C2233
C2223
C2213

C2212

S1122
S2222

§2233
25523

25513

285915

C1133
C2233
C3333
C3323
C3313

C3312

$1133
§2233

$3333

253373
253313

253315

C1123
C2223
C3323
C2323
C2313

Cr312

C1113
C2213
C3313
C2313
C1313

C1312

251123

25553

25333

45733

457313

455315

Ci112
C2212
C3312
C2312

C1312

Ci212/

281113
255013
253313
457313
451313

451315

251112
285015
253312
457312

451315

451512 )
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Matrix description

£E=5S0 ol

Stiffness tensor

Cis  Cis
Crs Gy
C35  Csg
Cus  Cyug
Css  Cs
Cos )

—_—

mn

O = CE

Compliance

Si1 Sy 3
Sy 83
S33

tensor

(36 - 6)/2 + 6 = 21 independent components

Ci1
Co
Examples:

Caq = G323

Sy = 48535
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Stiffness — compliance relations

* we can combine the expressions for matrix C and S:
o = Ce and € = So to give:
o = CSo, which shows:
I = CS, or, C = STwhere I is identity matrix
* Note that the definition of Young’s modulus E;; = 1/S;; does not mean that E

= C33 because C33# 1/S3;
Young’s moduli: 1/5,, 1/5,, 1/53;

Poisson’s ratio:

Vi3 = =S43/S44 S.3: the force applied to the face (001) and acting in the direction
[001] causes the face (100) to move in the direction [100].

There are 6 different Poisson’ ratios Vi2 5 V13 V23, V21, V31 ,V32
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Neumann equations

Crppr = Ay (1)@ 1 (8 )y (1) (1) C
Crpr = A (1,)a 1 (1, ) (1)@ (1),
Ciomr = Ay (4;)a 7 () a, (t)a, (L )Cijkl

Criner = Ay (¢,)a 7 (¢,)a,,(2,)a,(t, )Cijkl

tl ° t2 ° t3 ..... tn - symmetry elements of the material



Number of independent components
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Applications of Neumann equation
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Example: group 4

Symmetry elements:

90°,180°, and 270"

rotations about OX, axis

Problem

Cs) ="
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Applications of Neumann equation

Example: class 4

Cs1 = Ciany
/ D \ P3=Ds
O, O, Oyy)5

1 \QZ\\G% 4 180" rotation P2==p
2 'V
(;33 ) P P1
P00 D= (=p)ps(=p)(=D) = —PD:P1P1 = Cl311 = —Cian

Neumann equation
— ’ —_— — —
Ci311 = Ci311 == €3y = —Ciap — Cs) =Ci3n = 0

Ci1311= C322= G333 = 2137 C2311= €232 = (2333 = (o312 = 0



Applications of Neumann equation

Example: class 4

90° rotation:

— — _ r __
Ci111= €222 €2222=C1111 €3333=C3333 P1=DP2
' —
B B B P2=—"D1-
C1212=C121 C1313= 62323 €2323=C1313, - p, D
3—F3
Ci1122= G211 €1133= 6233 €233 = C1133,
6
—

Ci1211—= —C2122 Go222="Co111-

C1233= 72133, G313 = (323

C11 = Cp, C33, Cyq = C55, Cgp,

C12, €13 = Cp3, Cg1 = —Cq2

11 different components,
however only 7 are independent



Link:
material symmetry - property symmetry

39 groups of macroscopic symmetry

'

10 structures of c-tensor and s-tensor in
conventional axes

#

8 types of symmetry of elastic
response (elastic anisotropy)
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¢ and s tensors for all symmetries

\QIII QIII Nl '\:I&; T e e e
0000, 0000 Cubic 4,4,4/m 3,3 Triclinic
'\.I L el '\.I \:IJ\II Tl e
5 '\. g o 6 '\. 6 % 13«
Hexagonal — 3 o
o oomna,  Orthorhombic  4mm, 42m,  3m,3m,32  Monoclinic
00/ m, o0/ mmm 422, 4/ mmm
° non-zero component, ©® a component equal to twice the heavy dot component to which it is joined,

e—e components numerically equal, e—o components numerically equal, but different in sign
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Effect of axis choice and symmetry of response
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Sensitivity of tensors to material
symmetry

4th rank c-tensor
Is more sensitive to the material symmetry
than 2" rank K-tensor

K, Cijkl
— Number of
m3m 1 3 independent
S 1 o components
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Elastic response: isotropic vs cubic materials

Isotropic material

Dielectric |
response Elastic response
Poisson modulus
Kij — K51] Young modulus \\. (CH Clz)/z
S ar modulus

Material of cubic symmetry

Dielectric Elastic response (¢, ¢, ¢, o

0 0]

response C, Gy Cn O 0 0

Q L C, Ch Gy O 0 0

. 0 0 0 Cyu O O

K; =Ko, \ 0 0 0 0 Cu O
0 0 0 0 0 Cyl=x
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Cite this: RSC Adv., 2015, 5, 77399

Anisotropy in elasticity and thermodynamic
properties of zirconium tetraboride under high
pressure

Ruru Hao,® Xinyu Zhang,*@ Jiagian Qin,*® Jinliang Ning,? Suhong Zhang,? Zhi Niu,€
Mingzhen Ma® and Riping Liu®

The recently predicted ZrBs with an Amm?2 orthorhombic structure has great scientific and technical
significance owing to its novel B-Zr-B “sandwich” layer bonding and evaluated high hardness. To better
understand the performance of Amm?2-ZrB,, its elastic and thermodynamic properties under pressure
and temperature are studied here by taking advantage of first principles calculations in combination with
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Fig. 3 The projections of Young's modulus E (a), shear modulus G (b) and Poisson’s ratio v (c) in (—110) plane and (001) plane at pressures 0 GPa,
50 GPa and 100 GPa respectively, the units are in GPa for £ and G.
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Fig. 2 Direction dependence of Young's modulus E (a), (d), (g), shear modulus G (b), (e), (h) and Poisson's ratio v (c), (f), (i) under different

pressures for ZrBy,, the units are in GPa for E and G.
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Elastic response:
examples of materials

Sll — 1‘49 S12 — _0.63 S44 — 1.33 Sll — 0.84 S12 — 0.11
287 s, =-0.78

Units 210-""m2/N

Ses = 281, —S,)

S =2.64
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Stiffness coefficients for cubic materials

Cu Cp Cy Anisotropy ratio

Material class Material (10 N/m?2) (10'° N/m?) (10'° N/m?) (Cy — C)2C 4y
Metals Ag 124 9.3 4.6 0.34
Al 10.8 6.1 2.9 0.81
Au 18.6 15.7 4.2 0.35
Cu 16.8 12.1 7.5 0.31
o-Fe 23.7 14.1 11.6 0.41
Mo 46.0 17.6 11.0 1.29
Na 0.73 0.63 0.42 0.12
Ni 24.7 14.7 12.5 0.40
Pb 5.0 4.2 1.5 0.27
W 50.1 19.8 15.1 1.00
Covalent Si 16.6 6.4 8.0 0.64
solids Diamond 107.6 12.5 57.6 0.83
TiC 51.2 11.0 17.7 .14
Ionic solids LiF 11.2 4.6 6.3 0.52
MgO 29.1 9.0 15.5 0.65
NaCl 4.9 1.3 1.3 1.38

Table 2.2
Stiffness coefficients for selected cubic materials



Stiffness generally decreases with the
temperature increase

e the effect increases with the bond length
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Compressibility of solids under hydrostatic pressure

K= -1/V (dV/dp),
K- coimpressibility, V — volume, p-hydrostatic pressure

* The change in volume per unit volume is equal to ¢;
&i= &t &t &3

g; can be expressed through elastic compliance moduli:

E: = S0 = — Siit1 POk 10 Compressibility, units x10-'" m2/N

Compressibility is K=S;;,

Compressibility increases

with the bond length

I | | |
2.0 2.5 3.0 355 4.0
33
Bond length A)



Essential

1. The elastic response can be successfully treated with
the Neumann principle.

2. The symmetry of the elastic response is often higher
than that of the material.

3. The elastic response is controlled by a 4" rank tensor.
It is more sensitive to the material symmetry than the
dielectric response controlled by a 2" rank tensor.



